HBF49 feature set: A first unified baseline for online symbol recognition
نویسندگان
چکیده
As the rise of pen-enabled interfaces is accompanied with an increased number of techniques for recognition of penbased input, recent trends in symbol recognition show an escalation in systems complexity (number of features, classifiers combination) or the over-specialization of systems to specific datasets or applications. In spite of the importance of representation space in feature-based methods, few works focus on the design of feature sets adapted to a large variety of symbols, and no universal representation space was proposed as a benchmarking reference. We introduce in this work HBF49, a unique set of features for the representation of hand-drawn symbols to be used as a reference for evaluation of symbol recognition systems. An empirical constructive approach is adopted for designing this set of 49 simple features, able to handle a large diversity of symbols in various experimental contexts. An original effort is made for guaranteeing transparency of features design and reproducibility of experiments. We demonstrate that using off-the-shelf statistical classifiers, the HBF49 representation performs comparably or better than state-of-the-art results reported on 8 databases of hand-drawn objects. We also obtain a good recognition performance for user-defined gestures that further attests the ability of HBF49 to deal with a great variety of symbols.
منابع مشابه
Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...
متن کاملبازشناسی برخط حروف مجزای دستنویس فارسی بر اساس تشخیص گروه بدنه اصلی با استفاده از ماشین بردار پشتیبان
In this paper a new method for the online recognition of handwritten Persian characters has been proposed which uses a set of simple features and Support Vector Machine (SVM) as a classifier. The task of preprocessing allows us to equalize feature vectors from different characters. This algorithm is implemented in two steps. In the first step, input character is classified into one of eighteen ...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملAn Efficient Hybrid Approach for Online Recognition of Handwritten Symbols
This paper presents an innovative hybrid approach for online recognition of handwritten symbols. The approach is composed of two main techniques. Firstly, fuzzy rules are used to extract a meaningful set of features from a handwritten symbol, and secondly a recurrent neural network uses the feature set as input to recognise the symbol. The extracted feature set is a set of basic shapes capturin...
متن کاملCamera Pose Estimation in Unknown Environments using a Sequence of Wide-Baseline Monocular Images
In this paper, a feature-based technique for the camera pose estimation in a sequence of wide-baseline images has been proposed. Camera pose estimation is an important issue in many computer vision and robotics applications, such as, augmented reality and visual SLAM. The proposed method can track captured images taken by hand-held camera in room-sized workspaces with maximum scene depth of 3-4...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 46 شماره
صفحات -
تاریخ انتشار 2013